Monthly Tech-Tip | No tracking! No ads! |
We are drilling test holes down through about 40 feet of overburden into the seven layers of clay to be mined. The rig assembles five-foot auger-sections, drilling down and pulling out two sections at-a-time. We examine the auger, identify the clays and record the results. At the middle of the auger-full shown you can see the division between the A2 ball clay and the A3 white stoneware, it was about 50 feet down. This hole was 80 feet, that spans tens of millions of years of sedimentation! This is the first time we have been able to sample the entire depth of the overburden, a highly plastic red burning low temperature clay, now we can assess whether it is a useful product.
This is the top layer. Battle clay is highly bentonitic, it is the "super hero of plasticity" in the quarry, it is unbelievably sticky. We have considered it "over-burden" in the past, but now will be looking for ways to employ Battle clay in our products and seeking special-purpose markets for it. Only 10% of this can turn a silt into a plastic throwing body! It is also high in fluxes (melts by cone 6). That means we can use it to improve the fired maturity of bodies, reducing the need for talc. Removal of this layer has exposed the top of the White-Mud Formation, the "A1" layer. A1 is employed in high fire bodies to impart brown color and fired speckle.
Situated in the majestic Eastend river valley. The river has cut this valley over millions of years from the flat tableland 100 meters above, revealing all the layers of clay. These sediments were formed by the Western Interior Seaway. Today's river divides into two just west of here, leaving and strip of hills along the valley bottom. The hill being mined has minimal overburden to remove to uncover the layers of the “Whitemug Formation”. The reserves here are vast, the company has been mining just this one hill for 40 years, removing about 100,000 tons. Yet these layers stretch across the province and into Alberta. They are hidden from view except where valleys like this expose them.
Plainsman Clays extracts 6 different sedimentary clays from this quarry (Mel knows where the layers separate). The dried test bars on the right show them (top to bottom). The range of properties exhibited is astounding. The top-most layer is the most plastic and has the most iron concretion particles (used in our most speckled reduction bodies). The bottom one is the least plastic and most silty (the base for Ravenscrag Slip). The middle two are complete buff stonewares made by mother nature (e.g. M340 and H550). A2, the second one down, is a ball clay (similar to commercial products like OM#4, Bell). A2 is refractory and the base for Plainsman Fireclay. The second from the bottom fires the whitest and is the most refractory (it is the base for H441G).
Materials |
A2 Ball Clay
|
---|---|
Materials |
A3 Stoneware Clay
|
Buy me a coffee and we can talk